Principal component analysis for data containing outliers and missing elements
نویسندگان
چکیده
منابع مشابه
Using Principal Component Analysis (pca) to Obtain Auxiliary Variables for Missing Data in Large Data Sets
......................................................................................................................................... iii Acknowledgement ......................................................................................................................... iv Table of
متن کاملFaults and fractures detection in 2D seismic data based on principal component analysis
Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...
متن کاملRegularized Principal Component Analysis for Spatial Data
Abstract: In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at p locations with n repeated measurements. While principal component analysis (PCA) is commonly applied to find the patterns, the eigenimages produced from PCA may be noisy or exhibit patterns that are not physically meaningful when p is large relative ...
متن کاملA Family of Principal Component Analyses for Dealing with Outliers
Principal Component Analysis (PCA) has been widely used for dimensionality reduction in shape and appearance modeling. There have been several attempts of making PCA robust against outliers. However, there are cases in which a small subset of samples may appear as outliers and still correspond to plausible data. The example of shapes corresponding to fractures when building a vertebra shape mod...
متن کاملPrincipal Component Analysis of Process Datasets with Missing Values
Datasets with missing values arising from causes such as sensor failure, inconsistent sampling rates, and merging data from different systems are common in the process industry. Methods for handling missing data typically operate during data pre-processing, but can also occur during model building. This article considers missing data within the context of principal component analysis (PCA), whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2008
ISSN: 0167-9473
DOI: 10.1016/j.csda.2007.05.024